

PII: S0040-4039(97)00090-7

INTRAMOLECULAR REACTIVITY OF FUNCTIONALIZED ARYLCARBENES: 2-ALLYLOXYPHENYLCARBENES

Frank Gotzhein and Wolfgang Kirmse*

Fakultät für Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany

Abstract: 2-Allyloxyphenylcarbenes (8) undergo intramolecular addition (\rightarrow 9) and (formal) C-H insertion (\rightarrow 11) competitively. Stereochemical labels indicate that 11 and major amounts of 9 arise from triplet 8. The intermolecular O-H insertion of singlet 8 with methanol (neat) is ca. 50 times faster than intramolecular addition. Under these conditions, intramolecular reactions and intersystem crossing of triplet 8 proceed at similar rates ($k_T \sim k_{TS}$). © 1997 Elsevier Science Ltd. All rights reserved.

It is widely believed that spin-state-specific mechanisms can be assigned to the reactions of carbenes.¹ If spin inversion is relatively slow, $k_{ST} < k_S$ and $k_{TS} < k_T$, the mechanism depends on how the carbene is generated. Methylene is an eminent example of such behavior. In the case of rapid intersystem crossing, $k_{ST} > k_S$ and $k_{TS} > k_T$, the reaction is channelled through the most favorable transition state, regardless of the spin state in which the carbene is formed. It appears that aryl-carbenes belong to the second category. Although the triplet is the ground state of phenylcarbene,² the reaction of phenylcarbene with alkenes gives cyclopropanes with greater than 95% retention of configuration.^{3,4} The stereospecificity of the addition of phenylcarbene to 2-butene was not affected by dilution with perfluorocyclobutane,⁵ nor by sensitization with benzophenone.⁶ These results clearly indicate that $k_{TS} > k_T$. Entirely different behavior was encountered with 1-propenyloxy groups attached to the *ortho* position of phenylcarbene.⁷ The generation of **1** by direct photolysis afforded predominantly **2** whereas sensitization led to preferential formation of **3**; *E*-1 and *Z*-1 gave virtually the same mixture of *cis*-3 and *trans*-3. In contrast to phenylcarbene, triplet rather than singlet **1** undergoes efficient intramolecular addition; $k_T > k_T$.

In order to elucidate the effect(s) of intramolecularity, we have lengthened the "tether" which connects the double bond to the arene ring. In earlier work we observed that 2-(2-propenyloxy)-phenyldiazomethane (5a) undergoes cycloaddition (\rightarrow 6a) competitively with photolysis (\rightarrow 8a).⁸ As

9a is formed by two routes ($5a \rightarrow 6a \rightarrow 9a$ and $5a \rightarrow 8a \rightarrow 9a$), the ratio of **11a** : **9a** decreases with time. Extrapolation to t = 0 gives the ratio at which **9a** and **11a** originate from the carbene **6a**. More conveniently, the same ratio is obtained by irradiation of the tosylhydrazone sodium salt **4a** in which **5a** is generated and immediately photolyzed. In the presence of methanol, the ether **10a** and small amounts (<5%) of **7a** are also formed. Reduction products such as **7** do not necessarily arise from carbenes.⁹ Therefore, **7** is not included in the product distributions (Table 1).

On benzophenone sensitization, both **9a** and **11a** were found to increase at the expense of **10a**.¹⁰ The ratio of **11a** : **9a** also increased with the concentration of sensitizer and was smaller in cyclohexane than in methanol (Fig. 1). These observations indicate that ³8a contributes more to the formation of **11a** than to that of **9a**.

For further insight, 2-(2-butenyloxy)phenylcarbenes (8b) were generated from appropriate tosylhydrazone precursors 4b.¹¹ The carbenes 8b provide products that arise exclusively from the triplet state (*cis*-9b from *E*-4b, *trans*-9b from *Z*-4b) and from the singlet state (10b), respectively. The contributions of

¹8b and ³8b to product formation can then be dissected^{7b} as shown in Eq. (1). The formal C-H insertion leading to **11** proceeds by a triplet abstraction-recombination process for which ample precedent with 2-alkoxyphenylcarbenes exists.¹² The products of intramolecular addition, *cis-*9b

and *trans-9b*, originate in the same ratio from $E^{-3}8b$ and from $Z^{-3}8b$, as well as from sensitized photolyses of the pyrazolines *cis-6b* and *trans-6b*, i.e., conformational equilibration of the intervening 1,5-biradicals is rapid relative to ring closure. The ratio of hydrogen abstraction (leading eventually to 11b) to intramolecular addition differs slightly for $E^{-3}8b$ and $Z^{-3}8b$. Singlet **8b** is efficiently trapped by methanol but contributes little to the formation of **9b** (Table 1).

substrate	solvent	Ph₂CO (M)	9		10	11	% S*
			cis	trans			
4a- Na	methanol	-	2.0		92.0	6.0	
		0.010	4.	.1	74.0	21.9	
		0.025	5.4		64.2	30.4	
	cyclohexane	-	30	.0	-	70.0	
		0.016	19.0 12.7		-	81.0	
		0.125			-	86.3	
E-4b-Na	methanol	-	0.4	2.9	91.0	5.7	93
		0.016	1.1	5.0	73.5	20.7	75
		0.125	1.5	7.1	54.7	36.7	56
	cyclohexane⁵	-	3.6	25.4	-	71.0	14
		0.250	3.7	14.6	-	81.7	3
<i>Z-</i> 4b-Na	methanol	-	2.3	0.7	94.4	2.6	96
		0.016	3.2	6.0	70.3	20.5	72
		0.125	4.0	8.5	52.9	34.6	54
	cyclohexane	-	22.8	17.2	-	60.0	17
		0.250	12.8	19.8	-	67.4	6

Table 1. Product Distributions (%) Obtained from Photolyses of 4-Na

^a Fraction of products originating from the singlet state.

^b The product of C-H insertion with the solvent (14.5%) was also observed. Our data do not allow to assign the formation of this product to a specific spin state.

In many respects the reactivity of 8 is similar to that of 1. Relative to O-H insertion with MeOH, the intramolecular addition of ¹8 is as inefficient as that of ¹1. However, the stereoselectivities of *E*-**8b** and *Z*-**8b** does not fully converge on sensitization, in contrast to that of 1. For photolyses of **4b** in methanol, plots of the fraction of singlet products vs. concentration of sensitizer (Fig. 2) clearly indicate that 8 ($k_T \sim k_{TS}$) ranges between 1 ($k_T > k_{TS}$) and phenylcarbene ($k_T < k_{TS}$).

Figure 2. Effect of benzophenone-sensitization on the product distribution of various carbenes

REFERENCES AND NOTES

- For reviews, see: (a) Regitz, M., Ed. Carbene(oide), Carbine; Houben-Weyl, Thieme: Stuttgart, 1989; Vol. E 19b. (b) Wentrup, C. Reactive Molecules; Wiley: New York, 1984; Chapter 4. (c) Moss, R. A., Jones, M., Jr., Eds. Carbenes; Wiley: New York, 1973, 1975; Vols. I and II. (d) Kirmse, W. Carbene Chemistry, 2nd ed.; Academic Press: New York, 1971.
- (a) Trozzolo, A. M.; Murray, R. W.; Wasserman, E. J. Am. Chem. Soc. 1962, 84, 4991. (b) Wasserman, E.; Trozzolo, A. M.; Yager, W. A.; Murray, R. W. J. Phys. Chem. 1964, 40, 2408. (c) Barash, L.; Wasserman, E.; Yager, W. A. J. Am. Chem. Soc. 1967, 89, 3931. (d) Moser, R. E.; Fritsch, J. M.; Matthews, C. N. Chem. Commun. 1967, 770.
- 3. Gutsche, C. D.; Bachman, G. L.; Coffee, R. S. Tetrahedron 1962, 18, 617.
- 4. Closs, G. L.; Moss, R. A. J. Am. Chem. Soc. 1964, 86, 4042.
- 5. Moss, R. A.; Dolling, U.-H. J. Am. Chem. Soc. 1971, 93, 954.
- 6. Creary, X. J. Am. Chem. Soc. 1980, 102, 1611.
- (a) Hömberger, G.; Dorigo, A. E.; Kirmse, W.; Houk, K. N. J. Am. Chem. Soc. 1989, 111, 475. (b) Kirmse, W.; Hömberger, G. J. Am. Chem. Soc. 1991, 113, 3925:
- 8. Kirmse, W.; Dietrich, H. Chem. Ber. 1967, 100, 2710.
- 9. For a discussion, see: Guth, M.; Kirmse, W. Acta Chem. Scand. 1992, 46, 606.
- 10. The ratio of 11: 9 also decreases on continued irradiation in the presence of benzophenone. Therefore, product distributions were extrapolated to t = 0 for all photolyses recorded in Table 1.
- Solutions of the appropriate aldehydes [(a) Oppolzer, W.; Weber, H. P. *Tetrahedron Lett.* 1970, 1121.
 (b) Shimuzu, T.; Hayashi, Y.; Kitora, Y.; Teramura, K. *Bull. Chem. Soc. Jpn.* 1982, *55*, 2450] in MeOH were treated with tosylhydrazine to give *E*-4b, 72%, m.p. 131 °C, and *Z*-4b, 81%, m.p. 116 °C.
- (a) Kirmse, W.; Özkir, I. S. J. Am. Chem. Soc. 1992, 114, 7590. (b) Kirmse, W.; Özkir, I. S.; Schnitzler, D. J. Am. Chem. Soc. 1993, 115, 792. (c) Kirmse, W.; Schnitzler, D. Tetrahedron Lett. 1994, 35, 1699.

(Received in Germany 17 December 1996; accepted 15 January 1997)